Bleaching the Single Dark Tooth

Changing the color of just one anterior tooth presents unique challenges.

By Van B. Haywood, DMD | Anthony J. DiAngelis, DMD, MPH

ABSTRACT

Single dark teeth represent a major challenge to obtain best esthetic outcome in a patient’s smile. Treatment options may include single crowns, veneers, bonding, or bleaching. Bleaching is the most conservative option to consider; but the potential for a successful outcome varies based on the cause and extent of the discoloration.

When a patient presents with either intrinsic or extrinsic staining or discoloration and seems to be a candidate for tooth bleaching, there is a variety of factors and options for the clinician to consider. What is the cause for the discoloration? Is there tooth trauma involved, or has the affected tooth been endodontically treated? What is the best delivery method for the patient’s lifestyle, financial situation, and commitment level to home care? Single dark teeth present a unique challenge for color change and the clinician must be aware of the basic principles of changing the color of one or more teeth in order to implement a successful treatment plan.

The Initial Examination

The first and most important consideration is to determine the cause of the tooth discoloration. A clinical examination is conducted, which includes evaluation of the color of the teeth and the adjacent gingiva (Figure 1). Additionally, transillumination, radiographs, and pulp testing may be appropriate. Radiographs should always be taken of a single dark tooth, as teeth can undergo pulpal necrosis without any other symptom than becoming dark (Figure 2). From this examination, the determination is made of whether the tooth is vital or not. A vital tooth may be darker due to trauma and resultant bleeding into the dental tubules without loss of vitality. Vital teeth may also discolor from internal or external resorption, calcific metamorphosis, as well as decay or leaking restorations on the proximal or lingual surfaces. A non-vital tooth may have become darker from the same reasons as a vital tooth, but also have experienced pulpal death. A tooth that has received endodontic treatment may also later darken, especially if there is a poor seal of the endodontic access opening (Figure 3).

Even if a tooth tests as non-vital, it may not require endodontic therapy. If there is no radiographic evidence of pathology and no clinical symptoms, then there is no reason to initiate endodontic therapy based on vitality testing alone. Often single dark teeth are the result of trauma, which should be determined in the dental history. It can take anywhere from 1 to 20 years after the trauma before any pulpal problems develop.

Additional considerations for the single dark tooth are the color of the gingival tissues around the tooth, as well as whether there is any root structure visible due to recession. A smile analysis is used to determine these conditions as well as the movement of the lip during smiling and whether a “gummy smile” exists. The dentin in the root is different from the dentin in the anatomic crown, and does not bleach well if at all, regardless of whether internal or external bleaching is attempted. Also, discolorations of the gingiva may cause a tooth that may be a perfect color match to not be harmonious. Either of these conditions is magnified if the lip exposes much of the root or gingiva because of a hyperactive lip or gummy smile.

Trauma and Calcific Metamorphosis

Many studies suggest that the prevalence of traumatic dental injuries (TDI) is high, although significant variation occurs between countries, populations, age, and gender. Epidemiological studies, while not always comparable, support the growing body of evidence that TDIs represent a significant challenge for clinicians. A study by Koste and colleagues reported that 25% of 6- to 50-year-olds in the United States had experienced a TDI. Approximately 30% of children have sustained a TDI to their primary dentition, and 25% of all school-aged children have experienced a TDI. Other reports document that luxations represent the majority of primary teeth injuries, whereas crown fractures constitute the most commonly occurring injury in permanent teeth. Also, studies have reported that 71% to 92% of TDIs occur by age 19.

The etiology of dental injuries varies by age. In the 0 to 6 age group, falls predominate. As children enter school, falls, collisions with other children and objects, as well as participation in organized physical activities and sports contribute to dental injuries. TDIs in the teen and young-adult age group are more the result of sports and motor vehicle accidents. Several studies have documented that approximately one third of dental injuries are sports-related. Other causes of TDIs include physical abuse, fights, and assaults—often involving alcohol as an aggravating factor.

The pulp can respond to trauma in a limited number of ways. Primarily it can survive, die, or undergo pulp canal obliteration (PCO), often referred to as calcific metamorphosis. The latter represents a common finding subsequent to luxation injuries, 3.8% to 24%, and root fractures, 69% to 73%. The precise mechanism of PCO is not known but disruption of the neurovascular bundle appears to stimulate the rapid formation of hard tissue (dentin or osseous) beginning within the pulp chamber and progressing along the pulp canal walls. It may present as partial or total obliteration of the pulp canal space. Although radiographs may reveal what appears to be total obliteration of the pulp canal, generally there remains clinical evidence of a pulp canal and pulp tissue. Clinically, the tooth will appear dark yellow due...
to the increased deposition of underlying dentin. Additionally, there may be a gradual diminution in response to electrical and thermal pulp testing. PCO occurs more frequently in teeth with open apices and in more severe luxation injuries involving displacement.

Extrusive and lateral luxation injuries in immature permanent teeth have demonstrated high rates of PCO. A recent study by Netto and colleagues reported the chances of PCO in intruded permanent teeth to be six times greater than in mature teeth, open vs closed apex, and that PCO occurred in 26.7% of such injuries. PCO can occur in subluxated and crown-fractured teeth, although with less frequency.

As mentioned previously, PCO is a common occurrence after root fractures. The location of PCO is thought to be indicative of the type of healing. PCO in the apical segment only is suggestive of hard-tissue callus formation, whereas PCO in the coronal segment or in both coronal and apical fracture segments is indicative of connective tissue repair of the fracture.

Pulp necrosis as evidenced by periapical radiolucency is an infrequent sequela to PCO occurring in approximately 7% to 16% of cases; consequently, prophylactic endodontic therapy is not recommended by most authors. Teeth with PCO likely have diminished healing capacity, and it is not well established whether a secondary trauma or additional dental treatment causes necrosis. In some instances, such as preparing a tooth with PCO for an abutment, it may be prudent to perform prophylactic endodontic therapy before the definitive restorative procedure. A recent article by daCunha and colleagues suggests implementing endodontic therapy prior to development of a periapical radiolucency in a tooth with PCO, based on two major considerations: (1) the technical difficulty and complications that may occur in treating these teeth; and (2) their review of a study that demonstrated a 97.9% success rate for teeth treated without periapical radiolucencies vs a 62.5% success rate for teeth treated with periapical radiolucencies. Specific clinical situations will dictate clinical decisions; however, given the relatively low incidence of pulp necrosis in teeth with PCO, endodontic treatment usually is not recommended in the absence of a periapical radiolucency or symptoms. Nonetheless, if a periapical lesion develops, endodontic therapy can be both challenging and fraught with complications. The use of operatory microscopes in the hands of a skilled clinician is warranted and improves the chances of a successful outcome.

Most traumas to primary teeth are luxation injuries that frequently result in radiographic evidence of PCO. Although this may or may not result in crown discoloration, it ceases to be a concern for the patient, parent, or clinician as the tooth is eventually exfoliated. The only indication for bleaching primary teeth, which are generally very light, is trauma that caused the tooth to become dark and the patient is being affected psychologically by the darker teeth. There is no indication for endodontic therapy.

In contrast, younger patients who sustain TDI's where development of the permanent tooth is incomplete, PCO in the form of a discolored incisor presents a long-term esthetic challenge. The most conservative approach to managing PCO-induced discoloration is bleaching without endodontic therapy.

**Tray Bleaching**

There are a number of types of bleaching techniques to consider for both vital and non-vital teeth, but these types may be divided mainly into those performed in-office or those continued at home. With the advent of nightguard vital bleaching involving tray application of 10% carbamide peroxide, a method for bleaching single dark teeth became more readily available, and did not involve the use of highly caustic chemicals. The original recommendation for a single dark tooth was to make a non-scalloped, no-reservoir tray, and bleach all the teeth. The tooth that was darker generally took longer, so an “X” was made on that tooth mold of the tray so the patient could continue to bleach that tooth longer than the other teeth. The use of the “X” on the teeth to be bleached was also helpful when the patient already had crowns on some teeth, and placing bleaching material on them was a waste of material. While this tray system was simple and effective, it did not always result in a perfect match of the teeth. All the teeth would lighten, but often the darker tooth was not able to lighten as much as the normal teeth, and the resultant outcome was lighter teeth, but still with one tooth slightly darker than the others. Some authors have recommended using a reservoir on the darker tooth, but the use of reservoirs has not been shown to increase bleaching efficacy. It is not possible to “spot bleach” a tooth either, because the bleaching material goes through the enamel and dentin to the pulp in 5 to 15 minutes, and bleaches under restorations and from one surface to the other (facial to lingual). It has also been shown to bleach beyond the borders of the tray, generally to the cemento-enamel junction (CEJ), even if the tooth is only partially erupted.

The ideal bleaching tray is fabricated on a horseshoe-shaped cast with no vestibule to provide good adaptation of the bleaching tray material. Also, the cast should be trimmed such that the central incisors are vertical to avoid folds on the facial. One challenge in fabrication of the single-tooth or regular bleaching tray is trimming the cast without abrading either the teeth or the gingiva. This outcome is accomplished by trimming the cast from the base rather than the sides (Figure 5).

**Single-Tooth Bleaching Tray**

An improvement on this concept is the use of the “single-tooth” bleaching tray when one tooth is darker, but the other teeth are reasonably acceptable (Figure 6). In this tray design, a conventional non-scalloped, no-reservoir tray is fabricated. Then the teeth molds on either side of the dark tooth are removed (Figure 7 and Figure 8). The patient is given one syringe of bleaching material and applies it only to the single dark tooth mold and leaves in the appliance. Teeth will bleach at different rates and to different color levels. The goal is to determine how light the single dark tooth will bleach first. If the color of the single...
dark tooth does not get as light as the surrounding teeth, then the other teeth are not bleached (Figure 9) and the closest match has been achieved. If the single dark tooth matches the other teeth then, again, the other teeth are not bleached. Only if the single dark tooth gets lighter than the adjacent teeth should they be bleached, and in that case, daytime bleaching in short intervals should be used to avoid getting the adjacent teeth lighter than the single dark bleached tooth. Generally, the patient should be informed that the bleaching time for the single dark tooth is about 8 weeks, although it is highly variable.

“One challenge in fabrication of the single-tooth or regular bleaching tray is trimming the cast without abrading either the teeth or the gingiva. This outcome is accomplished by trimming the cast from the base rather than the sides.”

Endodontically Treated Anterior Teeth
If the dark tooth has already received endodontic therapy, then additional considerations for the discoloration include remaining pulp materials in the pulp chamber, endodontic sealer or filler in the pulp chamber, and dark or leaking restorations in the endodontic access opening, as well as endodontic failure. The type of filler is also important, as silver points require different considerations from gutta-percha fillers. Treatment considerations also may depend on when in the endodontic treatment and subsequent follow-up the tooth was noticed to be dark.

Endodontically treated teeth may be treated from the inside, the outside, or both. The decision for inside or outside depends on a knowledge of what has occurred inside the tooth during the endodontic therapy, as well as the type of restoration used to seal the access opening. The tooth may have received a satisfactory endodontic treatment and been subsequently restored with an acceptable lingual composite that matched the tooth color. However, in subsequent years, the tooth may have discolored (Figure 10). In this situation, the decision for bleaching favors external bleaching, because going inside the tooth to remove the composite will weaken the tooth (Figure 11). However, the choice not to go inside the endodontic tooth depends on whether the treating dentist is aware of the extent to which the pulp chamber was debrided during endodontic therapy, as well as the height in the chamber of the cement and filler.

In-Office Bleaching
In-office bleaching is the oldest form of bleaching. Attempts to bleach single dark teeth date back to the 1800s, and bleaching a single dark tooth was one of the first bleaching research areas. A number of materials have been used, but hydrogen peroxide has been the historic favorite. The high concentration of hydrogen peroxide could be applied externally or internally, and often involved heat and light. The classic non-vital in-office bleaching technique involved the placement of 35% hydrogen peroxide into the pulp chamber, and increasing the chemical reaction by the use of heat or light. However, this technique lacks precise control as to the amount of lightening. More critically, when cases of external or internal resorption were evaluated, there were four common concerns listed: 1) teeth had received trauma; 2) high concentrations of peroxide were used; 3) high heat was used to enhance the bleaching; and 4) there was no seal over the gutta-percha. Although the dentist cannot control the trauma, elimination of the other three areas under dental control should be done to lessen the chances of resorption and loss of the tooth. Other possibilities for resorption include the fact that 10% of teeth do not have a connection between the enamel and cementum, with possible percolation of hydrogen peroxide into the surrounding areas, lowering the pH. Using a bleaching product with a higher pH or a salivary catalase are attempts to reduce resorption issues.

Walking Bleach Technique
The change in in-office bleaching led to the next step of “walking bleaching.” In this technique, the gutta-percha was removed 2 mm below the CEJ and a
CASE EXAMPLE THREE (12.) The initial examination and radiograph determined that the dark lateral incisor was abscessed. After endodontic therapy, the tooth was then ready for bleaching. Had bleaching been performed without the radiograph, the abscess would have remained untreated and further damaged the tooth. (13.) The endodontic access opening should be enlarged until it can be certain that all the remaining brown pulp tissue has been removed from the lateral walls of the pulp chamber as well as the incisal extent. Pulps that become necrotic when the tooth was young often have pulp chambers much larger than the endodontic access opening. (14.) Even before bleaching the tooth, the removal of the brown necrotic pulp remnants and dental materials makes the tooth much lighter. This occurrence demonstrates how the materials inside the tooth affect the color of the outside. (15.) For internal bleaching, the gutta-percha should be removed 2 mm below the CEJ. (16.) Once the gutta-percha has been removed to the appropriate depth and from the walls of the pulp chamber, the endodontic filler is sealed from the pulp chamber with a resin-modified glass ionomer. Etching is not required for bleaching. (17.) The patient may bleach externally (as well as internally) with a full tray rather than a “single-tooth tray” to lighten all the teeth or because there are crowns that will not change color. To identify the dark tooth for additional treatment, an “X” is placed on the tooth mold for the placement of the bleaching material. If the tray is to be worn during the day rather than at night, the “X” should be placed on the lingual. (18.) After the tooth being bleached has reached its maximum lightening, the bleaching process should be stopped for 2 weeks to allow the shade to stabilize and the bond strengths to return to normal. Then an opaque whiter composite can be placed in the chamber if needed to further harmonize the tooth color.

Inside Bleaching
When performing internal bleaching on a non-vital tooth that has received endodontic therapy, it is important to clean out the inside of the pulp chamber (Figure 12). Often, when endodontic therapy is performed because of trauma, the pulp chamber is large, with high pulp horns. The access opening to the apex may not include debride- ment of the chamber (Figure 13). The restorative dentist should open the access opening enough to access both the incisal extent as well as the lateral extent of the pulp chamber. Often, removal of the remaining pulp chamber will significantly alter the color of the tooth, even before the bleaching has begun (Figure 14).

Inside–Outside Closed Bleaching
One of the best options for an endodonic- tically treated tooth is to use both the inside and outside techniques in combina- tion. Entering the inside of the tooth will allow removal of any pulp tissue, filler, or cement sealer, as well as discol- ored restorations in the chamber. The classic walking-bleaching treatment is performed as described above (Figure 15 and Figure 16), then the tooth is temporarily sealed while a single-tooth bleaching tray is fabricated. Bleaching continues at home externally using the single-tooth tray approach until the sin- gle dark tooth has reached its maximum lightness (Figure 17). Then the patient waits 2 weeks for the shade to stabilize and the bond strengths to return to normal. Upon return to the dentist, a comparison of the single tooth is made to the adjacent teeth. If the endodontically treated tooth remains slightly darker than the remaining teeth, an opaque stark-white composite is used internally to fill the pulp chamber and provide an additional slight lightening of the tooth (Figure 18). The final orifice is closed with the appropriate color- matched composite to the external por- tion of the tooth. Some clinicians prefer to use a resin-modified glass ionomer internally to improve the bond to dentin, followed by the traditional composite restoration to close the opening. This approach of both inside and outside bleaching with a closed pulp chamber gives the benefits of both techniques. The inside bleaching segment allows the tooth to be cleaned as well as tem- pers the final color with a composite.
restoration, while the outside bleaching segment allows the patient to bleach as long as necessary to obtain the maximum whitening of the tooth without returning to the office (Figure 19 and Figure 20). Because a cast already exists for the single-tooth tray, should the single tooth get lighter than adjacent teeth, a new bleaching tray can be fabricated and the patient can use it for day wear to titrate the color to a final match. The average treatment time for single dark teeth seems to be 8 weeks, although there is a wide range of treatment times. While 10% carbamide peroxide is generally used for traditional overnight treatment, higher concentrations may be used once it is determined that sensitivity is not a problem.

Inside-Outside Open Bleaching
In special patients and situations, the dentist may choose to perform inside and outside bleaching while leaving the access opening unrestored. In this situation, the patient injects carbamide peroxide into the pulp chamber and the tray, then seats the tray in the mouth to protect the opening. While this may shorten treatment time due to the continued application of fresh bleaching material, it is essential that the patient be able to perform their part, and also return to the office to have the opening closed. While the tooth will not get any tooth decay during the bleaching process due to the increase in pH afforded by the carbamide peroxide, there is the danger that the patient may cease bleaching but not return in a timely fashion to have the orifice sealed. If the office is not equipped to fabricate the additional single-tooth tray, then the standard replacement of the internal carbamide peroxide is performed weekly, taking 1 to 6 office visits for completion. A provisional restoration maintains the seal, and the patient is instructed to call the office immediately if occlusion or food disrupts the provisional seal.

Bleaching or Crown Decisions
The question is often asked why the anterior endodontically treated tooth is not crowned today as it once was in the past. One reason for the resurgence of bleaching single anterior teeth is that the research has shown that while posterior teeth that have received a root canal should be crowned, anterior teeth should only be crowned if they needed a crown regardless of the endodontic therapy. The reason is because the single greatest predictor of survival of an endodontically treated tooth is the amount of remaining dentin. If an intact anterior tooth has a root canal, the external enamel and dentin is still intact. Preparing the tooth for a crown after the endodontic treatment removes the remaining dentin and results in a premature loss of the tooth. Research has also shown that the post does not strengthen the tooth, and cannot compensate for the loss of dentin. Hence, the tooth has a better prognosis to be bleached and restored with composites than to receive a post, core, and crown.

Conclusion
The single dark tooth is an esthetic challenge regardless of the treatment approach. Bleaching the single tooth alone is the safest, most conservative approach to determining the response of the single tooth before changing the adjacent tooth colors. A “single-tooth” bleaching tray is the tray of choice for external bleaching. Single dark teeth with calcific metamaorphism should not be treated endodontically unless there are clinical symptoms of pain or radiographic evidence of an abscess.

For internal bleaching of an endodontically treated tooth, a “walking bleach” approach using 10% carbamide peroxide internally seems to afford the safest approach over previous traditional methods. The combination of one internal bleaching appointment to debride the pulp chamber, followed by tray bleaching with a single-tooth tray or full non-scalloped, no reservoir tray provides the flexibility of unlimited time of treatment without incurring significant in-office charges. Additionally, waiting 2 weeks after bleaching for the shade to stabilize and the bond strengths to return to normal and then using internal composite bonding can homogenize final shade discrepancies. Regardless of the technique used for bleaching, a relapse is possible in 1 to 3 years, and is generally best addressed by outside bleaching in a single-tooth tray with 10% carbamide peroxide to re-bleach the tooth until it matches the surrounding teeth.

References
28. Amir FA, Gutmann JL, Witherspoon DE.
Tooth sensitivity is the single most significant deterrent to bleaching, and must be understood to be able to manage the treatment of patients. All forms of vital tooth bleaching are associated with some level of sensitivity.1-6 Hence, the dental office and the patient must be prepared for the possibility of sensitivity during bleaching treatment.

PREVALENCE AND CAUSE

The three major classes of bleaching—in-office, tray, and over-the-counter (OTC)—all demonstrate some prevalence of sensitivity. Typical bleaching ingredients are either hydrogen peroxide or carbamide peroxide. For comparison, a 10% carbamide peroxide product is approximately 3.5% hydrogen peroxide. Generally, the higher the concentration of the peroxide, the greater the chance of sensitivity.7 In-office bleaching uses the highest concentration of peroxide (15% to 35% hydrogen peroxide), and has a range of sensitivity from 10% to 90%, with some sensitivity being so severe as to require analgesics posttreatment.8-10 Typically, multiple in-office visits are required for maximum whitening,11 and those visits should be spaced at least 1 week apart to allow for reduction of sensitivity caused by treatment.12 It is also recommended to pre-medicate patients with non-steroid anti-inflammatory drugs to reduce the incidence of sensitivity.12 The second highest concentration of peroxide is found in the OTC products. These products typically range from 6% to 15% hydrogen peroxide. Although they have a shorter treatment time due to the limited efficacy of hydrogen peroxide (30 to 60 minutes), they still generate tooth sensitivity as well as gingival irritation. Even shorter treatment times of OTC strips with higher concentrations have exhibited greater sensitivity than lower concentrations with longer treatment times.13

The classic tray bleaching treatment involves 10% carbamide peroxide or 3.5% hydrogen peroxide. Incidences of 25% to 75% are reported,14,15 although differences in study design influence data in all treatment options. Generally, sensitivity occurs in the first 2 weeks of treatment, often in the first few days.16 The more recent addition of potassium nitrate to bleaching materials has reduced, but not eliminated, sensitivity. It is important to note that the presence of sensitivity is the most probable cause for persons discontinuing bleaching, with one report of 14% termination of bleaching due to sensitivity.17

A recent report on double-blinded, placebo-controlled clinical trials has provided evidence that the addition of low levels of potassium nitrate and/or potassium nitrate and fluoride significantly reduce postoperative sensitivity relative to products that do not contain either agent.3,5

Whereas all of the typical causes of dentin hypersensitivity generally involve the hydrodynamic theory of fluid flow, the sensitivity associated with bleaching seems to have a different origin. In bleaching situations, the teeth may be in excellent condition, with no cracks, exposed dentin, or deep restorations, but after a few days of bleaching, the tooth may experience severe sensitivity. This seems to be related to the easy passage of hydrogen peroxide...
Figure 2  Bleaching Sensitivity Treatment: Stage 1 Prevention options in patients with existing sensitive teeth.
and urea through the intact enamel, through the dentin in the interstitial spaces into the pulp within 5 to 15 minutes.\textsuperscript{18} In effect, the tooth is a semipermeable membrane that is quite open to certain-sized molecules. Once it is understood how easily the peroxide penetrates the tooth, the resultant pulpal response of sensitivity may be considered a reversible pulpitis. Tooth sensitivity is the main side effect of bleaching, and may be caused primarily by the peroxide penetration to the pulp, and secondarily by the mechanical pressure of an improperly fitting tray or occlusion on the tray. The other side effect recorded is gingival irritation, which may be related to an improperly fitted tray, occlusion on the tray, or chemical irritation from higher concentrations of hydrogen or carbamide peroxide.

**PREVENTION**

Because tooth sensitivity mainly depends on inherent patient sensitivity, frequency of application, and concentration of the material, a history of sensitivity should be determined during the examination.\textsuperscript{14,19} Patients generally will report or should be asked if their teeth are sensitive to cold. Additionally, existing sensitivity can be determined from the preoperative exam by simple methods of explorer contact with areas on the teeth, or air blown on the teeth. Patients can be counseled in the frequency of application and the appropriate concentration of bleaching agent, with instructions that applications more than once a day or higher concentrations of bleaching agent increase the likelihood of sensitivity.\textsuperscript{3,4,20-22} All other delineators, such as pulp size, exposed dentin, cracks, gingival recession, caries, sex or age of the patient, or other physical characteristics are not predictive of who would have sensitivity.

Most reports of sensitivity occur within the first 2 weeks, regardless of how long the patient may treat their teeth. Often, these reports are a single day of sensitivity, followed by no problems the next day. The tooth’s response to bleaching is very individualistic, and can only be determined by beginning treatment. However, the history of sensitive teeth by the patient, as well as their response during examination to explorer touch or air, can be a reasonable predictor.

Because bleaching tends to produce some tooth sensitivity under ordinary circumstances, patients with pre-existing tooth sensitivity must be cautioned that increased sensitivity, albeit transitory, may occur, and that management of the sensitivity may require a longer time span for bleaching as a result of the additional time to treat the sensitivity.

Other contributors to sensitivity include rigid tray materials, the base vehicle composition and viscosity, flavoring agents, or patient habits such as clenching or bruxism. The short-term pulpal response varies from patient to patient and even from tooth to tooth. Although penetration of peroxide through the tooth to the pulp can produce sensitivity, the pulp remains healthy and the sensitivity is completely reversible when treatment is terminated. No long-term sequelae remain after the sensitivity has abated.\textsuperscript{23-25} Research also has shown that patients have tooth sensitivity even when using a non-bleaching agent in a tray, or just wearing a tray alone. Hence, it is not possible to have all patients be sensitivity-free because of the mechanical forces of materials and occlusion, and some plans must be made to address potential problems.

**TREATMENT RECOMMENDATIONS**

Most of the earlier treatments for sensitivity involved tray bleaching, as the ease of use of this system and universal popularity made it the most commonly used system for tooth bleaching.\textsuperscript{26,27} The passive approach for treating sensitivity was first used. This involved a reduction in wear time, or in frequency of application. Sensitivity treatment could also involve temporary interruption of the bleaching treatment. After the interruption, treatment can often be

A recent report on double-blinded, placebo-controlled clinical trials has provided evidence that the addition of low levels of potassium nitrate and/or potassium nitrate and fluoride significantly reduce postoperative sensitivity relative to products that do not contain either agent.
Bleaching Sensitivity Treatment: Stage 2 Treatment

Patient begins bleaching and encounters sensitivity:
Consider Passive or Active treatment options

Passive Treatment options

Reduce concentration of bleaching material if possible

Patient reduces wear time at day or night

Patient changes from night wear to day wear

Patient skips a night or day of bleaching

Patient stops bleaching for an extended period of time

Patient proceeds to active treatment options

Active Treatment options

Continue or initiate brushing with desensitizing toothpaste

Place desensitizing toothpaste into tray and wear for 10-30 minutes before or after bleaching, or whenever discomfort

If gingival irritation occurs with toothpaste in tray, obtain non-SLS containing toothpaste.

If gingival irritation occurs with non-SLS toothpaste in tray, obtain professionally supplied potassium nitrate product

Wear tray with potassium nitrate product in place of bleaching material overnight for 1-2 nights

Switch patient from one brand of bleaching material to another, or from one type (hydrogen peroxide or carbamide peroxide) to another

If patient is unable to manage bleaching sensitivity, the bleaching is terminated and other restorative options are considered

Figure 3  Bleaching Sensitivity Treatment: Stage 2 Treatment options for patients who experience sensitive teeth during bleaching.
resumed without any further sensitivity. Cessation of treatment results in no lingering sensitivity. Although the passive approach has some success, patients and dentists prefer to have a more active approach. The active approach involves the use of either fluoride, potassium nitrate, or both in combination. Traditionally, fluoride has been used as a method of reducing sensitivity. The primary mechanism for action is to occlude dentinal tubules or increase the hardness of enamel, which impedes the flow of materials to the pulp. However, the peroxide molecule is so small that it can travel in the interstitial spaces between the dentinal tubules. Hence, fluoride has not been particularly beneficial in treating bleaching sensitivity.

**Potassium Nitrate Use in Bleaching**

Potassium nitrate has a completely different mechanism of action than fluoride. Potassium nitrate penetrates the enamel and dentin to travel to the pulp and creates a calming effect on the nerve by affecting the transmission of nerve impulses. After the nerve depolarizes in the pain stimulus-response, it cannot re-polarize, so the excitability of the nerve is reduced. Potassium nitrate almost has an “anesthetic-like effect” on the nerve.

One study demonstrated that applying potassium nitrate for 10 to 30 minutes in a bleaching tray could be successful in reducing sensitivity in more than 90% of the patients, and allow them to complete the bleaching procedure successfully. This technique was originally used by Jerome to treat tooth sensitivity after periodontal surgery in non-bleaching patients. He placed desensitizing toothpaste into soft trays that covered the now-exposed root surfaces of the teeth, and achieved good results. For patients with chronic sensitivity unrelated to bleaching, the toothpaste gives them an OTC product that they can use whenever they need it with tray application, even before a prophylaxis. This approach was extended by Haywood to include patients experiencing sensitivity during bleaching. Tray application could be used either before or after the bleaching treatment (Figure 1). Because the pain can occur remotely from the bleaching treatment, the potassium nitrate could be used as needed during the day or night. In severe situations, the potassium nitrate could be substituted for the bleaching material on alternating nights of wear.

The more readily available source of 5% potassium nitrate in the United States is desensitizing toothpastes that contain 5% potassium nitrate. Five percent is the maximum amount of potassium nitrate approved by the US Food and Drug Administration, and is the primary ingredient for sensitivity treatment allowed in OTC toothpaste. Based on the tray application study, desensitizing toothpaste can be placed in the tray for 10 to 30 minutes whenever sensitivity occurs. The only caution with toothpaste application is that some patients may experience a gingival reaction to the foaming ingredient sodium lauryl sulfate. This reaction is not caused by the potassium nitrate. The reaction generally produces a tissue burn or reddening of the gingiva. If this irritation occurs with one brand or flavor of toothpaste, the clinician may have to experiment with various OTC formulations for certain patients. Initially there was only one toothpaste available which had potassium nitrate, but not sodium lauryl sulfate, and that was the original “Pink packaged” Sensodyne. More recently, the advent of “Pronamel Sensodyne” has provided a new option for a non-sodium lauryl sulfate, potassium-nitrate containing toothpaste to be used in brushing or in the tray for treatment of sensitivity. If suitable toothpaste cannot be found for the patient, then the clinician should use the professionally available products containing 3% to 5% potassium nitrate and fluoride.
Several companies provide 3% to 5% potassium nitrate in a syringe for application in the bleaching tray as needed. The syringe materials, which must be purchased from the companies, may be more appropriate for episodic sensitivity associated with the bleaching itself where the toothpaste was not acceptable because of the gingival response. There are also disposable trays containing potassium nitrate which may be helpful, especially if there is no bleaching tray available for in-office techniques being used alone.

Once research determined that potassium nitrate in the tray was successful, the next step was to incorporate this material in the bleaching material rather than require a separate application. First attempts were not too chemically successful, but now most manufacturers have their bleaching product containing both fluoride and potassium nitrate. Examples of this would be Opalescence PF (Ultradent Products, Inc, South Jordan, UT), NiteWhite® Excel and NiteWhite® ACP (Discus Dental, Culver City, CA), Contrastm® (Spectrum Dental, Corpus Christi, TX) , GC TiON™ (GC America), and Opalescence® Treswhite™ Supreme (Ultradent Products). Early concerns were that either the fluoride or the potassium nitrate would interfere with the bleaching, but one study has indicated that bleaching efficiency is not reduced.30 Certainly, if there is any reduction in efficacy or increase in time of treatment, it is minor, and much better than termination of bleaching resulting from unmanageable sensitivity.31 Having the potassium nitrate in the material could also minimize the effects of mechanical irritation from an improperly fitting tray or occlusion causing movement of the tray and resultant tooth sensitivity.5

Pre-Brushing with Potassium Nitrate for Sensitivity Avoidance

Even though tray application of potassium nitrate was very effective, and the incorporation of potassium nitrate into the bleaching material has helped, these advances do not totally eliminate sensitivity. Relief from sensitivity requires brushing with potassium nitrate for approximately 2 weeks to be effective.32 A recent study33 compared patients who pre-brushed with the toothpaste containing potassium nitrate (Sensodyne) for 2 weeks before initiating bleaching to another group that used conventional fluoride-containing toothpaste. The group that pre-brushed with the potassium nitrate-containing toothpaste had less sensitivity overall, less sensitivity in the first 3 days, and more sensitivity-free days before a first occurrence. Results of patient surveys showed that the switch to a potassium nitrate-containing toothpaste was easy and well-accepted.

Recommended Treatment

Bleaching sensitivity may result from a combination of the patient’s pre-existing tooth and gingival conditions, the chemical nature of the peroxide, and the mechanical nature of the tray. The dentist should determine if the patient has pre-existing sensitive teeth that require a protocol to minimize sensitivity during bleaching. If the patient has no pre-existing sensitivity, a proactive protocol should be developed to address sensitivity should it occur. Figure 2 and Figure 3 offer this information in two treatment options, one for patients with a history of sensitivity, and one for patients with no pre-existing sensitivity. They also explain the options for passive or active treatment of sensitivity that occurs once the bleaching process is initiated.

CONCLUSION

Treatment of bleaching sensitivity involves many possible options (Figure 4). Prebrushing with a potassium nitrate-containing toothpaste can reduce or avoid sensitivity from bleaching. Tray application of potassium nitrate can be an effective episodic treatment for sensitivity. Other treatment time variations, use of different concentrations of material, and varying tray designs can all be part of a sensitivity management program. It is far better to try to avoid or minimize the sensitivity with the above steps than to treat sensitivity after it occurs. Even with all these options for sensitivity avoidance and treatment, there are still some patients who cannot manage their sensitivity and elect to terminate bleaching. Sensitivity seems to be a multi-factorial event which cannot be entirely controlled in every patient. However, the majority of patients, after a proper dental examination, history, and radiographs, can find an appropriate method with adjustment of treatment time and material, brushing with a desensitizing toothpaste containing potassium nitrate, or tray application of potassium nitrate, to minimize any sensitivity they may encounter, and proceed to a successful completion of the bleaching process.

REFERENCES


Bleaching and caries control in elderly patients

Professor Van B. Haywood DMD examines the role of bleaching in the older patient and how it relates to caries

Bleaching teeth with carbamide peroxide in a custom tray is an exciting service to offer patients and a tremendous adjunct to restorative dental treatment. One of the side effects noticed when bleaching teeth is that the use of 10% carbamide peroxide applied nightly in a custom-fitted tray is effective to remove plaque, reduce caries bacteria and elevate pH on elderly patients for successful long-term oral hygiene care.

As the population of the world ages and is living longer with more teeth, there is a greater number of people who have received good dental care in their younger years, but are now faced with difficulty in maintaining those restorations and existing teeth in their later years. Dentists have experienced the frustration of rampart root surface caries around crown margins or in virgin teeth as these patients age. This caries phenomenon seems to be associated with a reduction in salivary flow, due to both ageing, increased side effects of medications, and decline in health. There is also a loss in manual dexterity, and the ability to perform routine oral hygiene care. Even if these patients have access to care from a general dentist, their ability to clean at home around hemi-sected molars, under pontics for Fixed Partial Dentures, or interproximally around gingival recession or periodontally involved teeth is compromised, and often results in caries between dental appointments.
This mechanical disadvantage is further complicated by the tendency of these patients to use sugar containing mints for breath due to salivary flow loss, and the resultant effect on the caries index.

What is needed is a simple, inexpensive mechanism to apply to better clean the teeth. Rather than mechanical means alone, a chemotherapeutic approach is needed. Typically, fluoride in a tray has been used for this population. However, clinical experience has indicated this is not very effective. Chlorohexidine is also used, but the staining is a detriment to use. Interestingly enough, 10% carbamide peroxide can be used alternately with Chlorohexidine to remove those stains (Addy et al, 1991).

Although 10% carbamide peroxide is generally associated with tooth whitening, the material was originally used as an oral antiseptic for gingival healing (Haywood, 1992). It was being applied in a tray for wound healing when the tooth whitening side effect was discovered (Haywood, 1991). Carbamide peroxide 10 and 15% has been has been classified by the United States Food and Drug Association as category 1, which means there are sufficient data to demonstrate that these agents are safe and effective for use in the oral cavity as oral antiseptic agents (Haywood, 1993, Dental Product Spotlight, 2001). Persons now involved in tooth whitening research report a loss of plaque during that time such that their teeth feel ‘squeaky clean’ much like after a prophylaxis. Reports from a century ago cite the use of this material in children with pitted teeth to reduce caries (Atkinson, 1893).

Current research on safety noted that the pH of the saliva and the material in the tray is elevated to about eight in less than five minutes after application, and remains that for the duration of the application (Leonard et al, 1994, Leonard and Austin et al, 1994) (in those studies, two hours). This occurrence is related to the urea in the composition (Firestone et al, 1982, Wainwright and Lemoine, 1950). The pH values are crucial to preventing the formation of tooth decay, since root caries can start when the pH of the mouth is between 6 and 6.8 (Hoppenbrouwers et al, 1986, 1987). A further study has indicated that 10%CP kills one of the two bacteria causing tooth decay (Bentley et al, 2000). Gingival indices in bleaching studies have indicated some improvement in gingival scores (Powell and Bales, 1991), although the patient population involved in bleaching often has a very clean mouth for the onset of treatment. Carbamide peroxide is preferred rather than hydrogen peroxide, since the urea and carbopol in 10% CP allows it to be active up to 10 hours in the mouth, while hydrogen peroxide is only active for 30-60 minutes. (Haywood, 2007).

The tray design used for caries control is a non-scalloped, no-reservoir tray, which extends 1-2mm onto the gingival tissue (Haywood 2006, 2007). It should not extend into underruts to the path of insertion, nor encroach on frenum attachments. The contact with the gingival prevents the washing out of the material, and does not generally cause gingival irritation at the 10% concentration (Leonard et al, 1994). The lack of reservoirs means less material is needed per application. The traditional custom fitted bleaching tray from an alginite impression works well, although there are some options with ‘boil and form’ trays in certain arches (Haywood et al, 2001). The boil and form tray can also be used as a diagnostic test to see if the patient can wear the tray and if the material will be effective.

Carbamide peroxide for caries control has a long history of use, except that the previous attempts did not employ a tray application. Several papers cite the use of 10% carbamide peroxide as a rinse, in the form of Glyoxide, in orthodontic patients during three years treatment to prevent white spot lesions (Fogel and Magill, 1971). It has also been used in elderly patients as a rinse for oral hygiene (Haywood, 1992). Carbamide peroxide seems to be most effective when some type of container or barrier is used.

The questions of safety to the ingestion have been answered in literature prior to bleaching, as well as current literature (Ritter et al, 2002, European Commission, 2005). Prior to bleaching and even today, 10% carbamide peroxide is used in new born infants, 10 drops in their throat every two hours for seven to eight days, to treat candidiasis or thrush (Dickstein, 1964).

Since carbamide peroxide kills lactobacillus, and Chloroxide kills strep mutants, one option is to both clean the teeth and destroy the lactobacillus bacteria by wearing the non-scalloped, no-reservoir tray overnight with 10% carbamide peroxide. This can be supplemented by using Chlorohexidine rinse for 30 seconds prior to bedtime. In addition to caries control, the 10%CP can control the staining from Chlorohexidine.

The only side effect of this treatment is that the teeth will become white. For most people, this may be a benefit. However, since restorations do not change colour, there can be a mismatch between existing restorations and bleached teeth. Some restorations may need to be replaced due to this colour mismatch. However, the benefit of saving the teeth, or having larger restorations due to caries may over ride this concern. Teeth typically whiten to a certain level, then stabilise, even with further treatment. However, it is unknown to what level of whitening the patient will progress, some patients may have very white teeth over time.

Sensitivity is often associated with bleaching. However, in elderly patients, the pulps...
have receded such that sensitivity is seldom a problem. The use of potassium nitrate in the bleaching tray for 10-30 minutes has been shown to alleviate this in most patients (Haywood et al, 2001). Additionally, many bleaching products now contain this ingredient, and sensitivity levels have been greatly reduced with the combination of potassium nitrate and a soft tray, as well as by pre-brushing and using a desensitising toothpaste during treatment (Haywood et al, 2005).

This technique is meant to be used for the life of the patient. Studies on bleaching teeth nightly for six to twelve months with tetracycline-stained teeth have indicated no harm to the teeth or pulp with low concentrations of carbamide peroxide (Haywood 1997, Matis et al 2006, Leonard et al 1994).

Additionally, this technique may prove beneficial with oral cancer patients for whom the cancer treatment has reduced the salivary flow, and caries is a problem. It is also used in orthodontic patients to avoid white spot lesions, although the fit of the tray and the amount of material needed makes this option more of a challenge. Typically the ‘boil and form’ trays can be made over the brackets if care is taken.

**Summary**

Root caries may be minimised by use of carbamide peroxide in a tray overnight to remove plaque, elevate pH and kill bacteria. Long-term use is both cost efficient and safe. Sensitivity can be treated by potassium nitrate in the tray, pre-brushing with it, and using a bleaching product containing the material. Primarily the indication for caries control is for ageing patients, those with physical handicaps or patients in nursing homes for which conventional brushing and flossing is not proving effective. The side effect of whitening the teeth is often less of a problem than the cost and medical challenge of restoring teeth due to root caries.

**References**


Haywood VB, Caughman WF,Frazier KB, Myers ML. Fabrication of Immediate Thermoplastic Whitening Trays. Contemporary Esthetics and Restorative Practice 2001;5(9):84-86.


Haywood V B. Considerations for Vital Nightguard Tooth Bleaching with 10% Carbamide Peroxide after nearly 20 Years of Proven Use. Inside Dentistry 2006; Sept: 2-5.


Orthodontic Caries Control and Bleaching

Custom tray application of 10% carbamide peroxide to orthodontic patients for removal of plaque and avoidance of white-spot lesions is outlined.

By Van B. Haywood, DMD

ABSTRACT

Oral hygiene during orthodontic treatment can be facilitated by applying bleaching materials to elevate the pH of the mouth during the course of treatment. Fabrication of thermoplastic bleaching trays directly in the mouth over the braces without impressions affords a reasonable technique for the multiple trays required during the orthodontic changes.

Orthodontic treatment is one of the most conservative, long-lasting treatments to improve the esthetics and function of a patient. Bleaching is also one of the most conservative treatments to change the color of the patient’s teeth. Together, orthodontics and bleaching afford some of the most conservative, long-lasting treatment to offer a patient. Often, bleaching may follow orthodontic treatment, and occasionally use the orthodontic positioner as the tray with which to deliver the bleaching material. The most popular form for tray bleaching of the teeth involves the use of 10% carbamide peroxide in a custom-fitted tray.

One of the most disappointing sequelae of orthodontic treatment may occur after the appliances are removed. Sometimes, white-spot lesions are present due to inadequate cleaning of the appliances during the 1- to 3-year treatment period (Figure 1). Some home care of orthodontic patients, especially teenagers, has been so obviously poor that the orthodontist has found it necessary to remove the braces before the completion of treatment to save the teeth from decay. The challenge of orthodontic treatment is to maintain the cleanliness of the braces throughout the treatment phase. While bleaching will whiten teeth, tray bleaching with 10% carbamide peroxide has the side effect of removing plaque from teeth, improving gingival scores, and elevating the pH of the mouth and tray. Carbamide peroxide has been shown to kill many of the bacteria that cause tooth decay, as well as remove surface staining. This beneficial side effect affords a practical option to deal with the problems of oral hygiene during orthodontic treatment.

There have been many attempts to combine the properties of bleaching with the challenge of cleaning orthodontic patients. In the early 1960s, carbamide peroxide that was available over-the-counter (OTC) was used as a mouthwash in orthodontic patients for this reason, but with limited success, possibly due to the low contact time. When traditional nightguard vital bleaching was introduced in the late 1980s, fabrication of a custom-fitted tray over the brackets in the traditional method using an alginate impression and vacuum-formed matrix was determined to work better. However, over the course of the 1 to 3 years of orthodontic treatment, this approach would involve multiple impressions and trays as the teeth move every few months such that the previous tray would no longer fit the arch. Also, the main OTC ingredient with the best physical properties (Proxigel, GlaxoSmitKline Consumer Health Care, www.gsk.com) was removed from the market, leaving less desirable products available for this situation.

More recently, disposable trays with hydrogen peroxide to be worn for 30 to 60 minutes have been introduced as a cost-effective proposal for in-office debridement of the braces before the orthodontic visit. However, these trays do not fit well, and the nature of hydrogen peroxide does not retain its activity long enough to be beneficial in the caries control process, nor does the pH become elevated above that point at which tooth decay can occur. What is needed is a cost-effective method to create custom-fitted trays that can be worn overnight and contain a cost-effective carbamide peroxide and can be used for the duration of the orthodontic treatment to clean the braces of plaque and avoid white-spot lesions post-treatment. The purpose of this article is to present a technique that addresses those concerns by combining information from several sources in the bleaching literature with clinical applications.

Tray Fabrication

The traditional method for tray fabrication in the tray bleaching process involves a well-made alginate impression

Learning Objectives

• understand how the pH effects of carbamide peroxide bleaching materials affects the caries process and oral hygiene.
• learn a technique for fabrication of thermoplastic bleaching trays over orthodontic brackets directly in the mouth.
• develop a reasonable treatment option for caries-risk orthodontic patients to avoid white-spot lesions and caries.

Log on to www.insidedentistryCE.com to take the FREE CE quiz.

FIG. 1

CLINICAL EXAMPLE (1.) Poor oral hygiene during orthodontic treatment can result in decalcified and carious enamel at the end of treatment. (Photograph courtesy of Dr. Andrew Kious.)
of the arch to be bleached. A stone cast is generated from this impression, and trimmed in such a manner as to work well in the vacuum former. The custom-fitted tray is formed from thin soft material.

When considering how to clean orthodontic braces using bleaching tray materials, the main missing portion of the oral hygiene puzzle has been a cost-effective tray fabrication technique that could be used multiple times during treatment. While the traditional alginate impression over the brackets was initially used, it was very difficult to obtain a good impression especially of the area of the teeth between the brackets and the gingiva. This area is the most difficult to clean, and yet the tray fits the poorest in this area. Additionally, the time and labor costs to remove the wires, make the alginate impression, pour the impression in cast stone, trim the cast, then fabricate a bleaching tray in a vacuum former for the many times this would be needed make that approach weary for the patient and the orthodontist.

An alternate method for bleaching normal teeth to the traditional impression, cast, and laboratory fabrication of trays is to use a thermoplastic tray formed directly in the mouth. A dual technique has been previously reported. A later development to this approach was the introduction of single clear soft trays sold directly to dentists (Sure-Fit Ultra-Thin Professional Trays, Oratech, LLC, www.oratech.com; Ultra-Thin Dental Trays, Archtek, Inc, www.archtekinc.com). In this technique, the single clear soft tray is heated and softened in warm water that has been initially brought to a boil, then applied to the arch and directly contoured to the teeth by finger pressure. The patient then occludes into the softened tray and applies suction to form-fit the tray to the teeth. After the tray has cooled, the tray handle is then removed and the tray trimmed to fit. The use of this tray eliminates the impression stage for patients who may not tolerate impressions (those who might gag or choke using an alginate impression technique), and is useful in locations where laboratory equipment like a model trimmer or vacuum-forming machine is not available. Generally, a microwave oven, a coffee cup, and a pair of scissors are all that is needed to fabricate the tray. Occasionally, thermoplastic trays may not be long enough to completely cover the molars. However, it has been shown that 10% carbamide peroxide is effective as a bleaching agent well beyond the borders of the tray, and one might expect that the antimicrobial effects would extend beyond the tray as well.

The recently introduced thermoplastic trays, also called “boil and form” bleaching trays, were subsequently used with orthodontic patients to avoid removal of wires and multiple laboratory procedures. Those trays can be fabricated over the orthodontic braces directly in the mouth without removing wires or bands. Also, even though the trays are thermoplastic, they do not get soft enough to imbed themselves in the brackets, yet they can be readily adapted to the gingival area below the brackets, which is the hardest to clean.

The technique for fabrication over orthodontic brackets is outlined in the accompanying figures. Although the two clear trays mentioned above in the previous non-orthodontic bleaching will work, the 1.5-mm thicker tray (1.5 Full Arch Boil & Form, Archtek, Inc) has the advantage of less shrinkage, which means it will cover more brackets and teeth (Figure 2). One difference in the insertion technique from a normal tray is that the tray should be inserted from a facial direction to avoid the wires and brackets causing the ends to fold (Figure 5). The water is heated until it almost boils, then the tray is waved in the hot water until the front edge begins to curl. If it continues too long in the water, it will shrink too much to fit over the brackets. If it touches itself, it will bond and be useless. Once the tray is softened, it is removed and the curled-in edges quickly spread back open to avoid hanging on the brackets. Any excess hot water is shaken from the tray and the tray is inserted from the facial direction. The patient’s lips...
must be relaxed to allow insertion of the softened tray. Once in the mouth, finger adaptation is used to form the tray over the brackets on the facial and the lingual (Figure 4). When this is completed, the patient closes onto their posterior teeth and applies suction to form the tray with their lips (Figure 5). The tongue can also be used to push the tray against the lingual of the arch. When the tray has completely cooled in the mouth, the edges are disengaged from the brackets (Figure 6). The tray can then be removed, and the result is a custom-fitted tray made directly in the mouth over the braces (Figure 7). A pair of scissors can be used to remove any excess, as well as to remove the tray handle (Figure 8). The tray is reinserted to ensure that the occlusion is comfortable, and the tray handles have been removed smoothly (Figure 9). If needed, an acrylic trimming bur can be used to smooth where the handle was adapted. The mandibular tray can be fabricated in the same manner, although it is more difficult to fit. Only one tray is worn at a time, since the trays are constructed with the patient occluding into MI and are somewhat bulky. The best regime is to alternate nights of wear.

Bleaching Material for Caries Control
In conjunction with a custom-fitted tray made directly in the mouth over the orthodontic bracket is the use of an appropriate viscosity carbamide peroxide material. Bleaching materials are ideal to use in the tray because their high viscosity maximizes contact time and minimizes leakage from the tray. Tray application is ideal overnight since the carbamide peroxide bleaching materials are effective for overnight application. If this is not reasonable, then the carbamide peroxide can be used for daytime use at a minimum of 2 hours. The one disadvantage of bleaching materials is the relative cost for long-term use. Typical orthodontic wear uses about one syringe for 3 to 4 nights when using a 10% carbamide peroxide product, and the refill kits of four syringes cost about $4 per syringe, so the additional cost for treatment over a 2-year treatment regime would be about $500. However, compared to the cost of restorative treatments that could be avoided, this may be minimal. Other options to be considered are existing OTC products, but none has the appropriate consistency to be as efficacious. Currently available OTC products (Glyoxide, GlaxoSmithKline Consumer Healthcare, www.gsk.com, and CVS Antiseptic Oral Cleanser, CVS Corp, www.cvs.com) are much more affordable but lack extensive amounts of carbopol thickening agent, thus are not maintained in the tray as long as dentist-provided bleaching agents. OTC products can be worn in the tray for a minimum of 1 hour, and still provide some additional cleaning. Whichever material is selected, only the amount that will cover the tooth surface without excessive leakage from the tray should be utilized to conserve materials. It is wise to have the patient demonstrate use prior to dismissal from the office to ensure they understand the location and amount of material to use (Figure 10).

Carbamide Peroxide (CP) and its Antibacterial Properties
There are two basic formulations of peroxide materials used in tray bleaching. The initial tray ingredient in the original 1989 article was carbamide peroxide, which is active for 2 to 10 hours. Hydrogen peroxide has also been introduced, but is only active for up to 1 hour, so it is primarily for daytime use in bleaching. Ten percent CP is the commonly used percentage in tooth-bleaching procedures and is the most thoroughly researched CP formulation. It decomposes into 6.5% urea and 3.5% peroxide. The urea further breaks down to ammonia and carbon dioxide. Peroxide breaks down to water and oxygen. Carbopol (carboxy polymethylene polymer) is added to many commercial bleaching preparations because it increases the viscosity of the gel, increases contact time, and slows the release of oxygen from CP.20 Adding carbopol to CP preparations extends the maximal oxygen release time up to 10 hours, depending on how it is measured.21-22 The antibacterial properties of CP are well documented, as the original material was marketed as an oral antiseptic. In addition, artificially demineralized fissures (to simulate caries) inoculated with lactobacillus, and then treated with 10% CP gel for 2 hours showed no subsequent growth of lactobacillus when plated.23 The authors of this study concluded that 10% CP penetrated the carious fissures and killed the lactobacillus. It has also been shown that 10% CP inhibited growth of Streptococcus mutans and lactobacillus in vitro and reduced levels of salivary lactobacillus in vivo. The hydrogen peroxide products used in bleaching are not as effective for caries control since they do not contain urea.

Effect on Saliva, Plaque, Caries, and Gingival Health
Ammonia resulting from carbamide (urea) degradation plays a significant role in modifying salivary and plaque pH. In the 1960s, it was demonstrated that application of urea solutions to plaque resulted in an initial rapid rise in pH followed by a slow fall. The rise in plaque pH was related to urea concentration.24 More recently, 10% CP applied by wearing a custom tray resulted in a significantly increased salivary pH after 5 minutes of wear even though the CP products tested had an acidic pH (4.8 to 5.2). Salivary pH remained elevated above 8 for the 2 hours of tray wear for the test period.25 The buffering effect of CP in custom trays extends to plaque pH; measurements of plaque pH during 2 hours of CP application by custom tray showed that mean final plaque pH was significantly higher (8) than baseline (7). These results confirm the buffering effect of urea on saliva, since the normal urea concentration in saliva has a significant role in elevating plaque pH and in negating the rise in plaque pH after sugar challenge.26 The critical pH at which enamel and dentin begin to dissolve is 5.2 to 5.7 for enamel, and 6 to 6.5 for dentin.27 These studies demonstrate elevation of plaque and salivary pH significantly above these levels; this presumably results in a lower rate of caries.28 Elevation of saliva pH by CP also alters fears that acidic bleaching agents may cause enamel erosion. It is important to note that bleaching agents that contain hydrogen peroxide, but not CP, do not have these pH elevating effects, since it is the urea released from CP that causes elevation of plaque and salivary pH. Thus hydrogen peroxide-based agents would not necessarily have the same cariostatic benefits.

A similar study confirmed that salivary urea levels strongly correlated with plaque pH, very possibly causing a lower caries rate than controls or transplanted patients.29 This confirms the assumption that elevation of salivary and plaque pH by a constant source of salivary urea (for example from CP bleaching agents) may inhibit caries. Such caries inhibition has been demonstrated in...
the rise in pH creates an environment in which caries cannot flourish. However, because it creates a basic pH, it has been noted in the orthodontic literature that more calculus is present, particularly in the anterior portion of the mouth. Additionally, because the tray covers the brackets and wires, it provides protection from the irritations to the lips and cheeks of orthodontic hardware, much in the same manner as wax, but much smoother. The oral antiseptic properties of the bleaching material also help with ulcer healing, because this was the original use of carbamide peroxide. The bleaching material also helps in controlling malodor, since it provides a bubbling action to clean the teeth of food debris, as well as provide a bacteriostatic cleaning of interproximal spaces from its oral antiseptic activity.

As has been noted earlier, the disadvantage of the tray options is that they only come in one size. Hence, the tray fabricated in this manner may not cover all the teeth (Figure 14). Because the tray was made with the patient occluding into MI, this does not create an occlusal problem. The question concerns whether the teeth not covered will be protected. However, because the elevation of the pH is the primary mechanism for reducing caries activity rather than plaque removal, it may not be as critical to cover all teeth, but rather have a tray that will hold 10% carbamide peroxide in place during the night to elevate the pH above that which tooth decay can occur. When cross elastics are worn during orthodontic treatment, this technique cannot be used. Other options used during orthodontic therapy when elastics are being worn is to squirt the 10% carbamide peroxide material directly into spaces that are hard to clean for the mechanical debriement of those areas.

At this time, it is unknown whether this technique needs to be applied continually, or if it can be done for a week to clean, then do every other or third day. More research is needed in this area as to the elevation of the pH and how long it takes to drop below the critical levels to allow caries to progress, as well as the amount of plaque removed and how long takes it take to rebuild. This may vary from patient to patient. Disclosing tablets may show effectiveness over time. Additional cleaning appointments for the increased amount of calculus may be the motivating reason to wear the tray with the bleaching material, rather than the hope to avoid tooth decay.

Expressed Concerns
Concern is often expressed of the impact that the bleaching material will have on the orthodontic bond strength. However, research has shown that the oxidation process of bleaching will actually strengthen the polymerization of the composite-bonded brackets by further curing the composite. Generally, composite only cures about 70%, so the addition of carbamide peroxide further increases the bond strength of the brackets. The opposite of this is true if bleaching is performed before bonding. In that case, the residual oxygen in the tooth reduces the bond strengths by 25%. Patients should wait at least 2 weeks after bleaching before any bonding procedure is attempted, to allow the complete dissipation of the oxygen from the enamel. However, once the bonding has been polymerized, then bleaching over the bonding will further polymerize the composite.

FIG. 13

FIG. 14

The second concern expressed of bleaching during orthodontic treatment is that there will be a “yellow spot” remaining after the bleaching. However, this has not been shown to be true either, as the peroxide passes easily through the tooth in 5 to 15 minutes, and will bleach under any composite or veneers already in the mouth (Figure 11 and Figure 12). If there were to be any yellow spots, those are most likely the residual composite from the bonding procedure, which will be embedded into the tooth at least 25 µm (Figure 13). Abrasion techniques must always be used after debonding orthodontic brackets to remove this composite. Even if there were a chance of a yellow spot, the simple solution would be to re-bleach the teeth. However, it has been shown that a tooth cannot be “spot bleached” due to the easy passage of peroxide from facial to lingual, and all clinical examples of bleaching during orthodontics have not shown any hint of an unbleached spot.

Concern has been expressed about the long-term use of the material, and the swelling of material. However, the safety of 10% carbamide peroxide has been demonstrated pre-bleaching in use in newborn infants, and in previous long-term uses. The original product (Proxigel) was approved as Generally Recognized as Safe (GRAS) for use as an oral antiseptic by the US Food and Drug Administration for the life of the patient.

Additionally, the long-term treatment of tetracycline patients has shown no detrimental effects on the teeth, and the 20-year history of research on the technique has shown the low-concentration, neutral-pH bleaching products from reputable manufacturers to be as safe to the teeth as normally ingested food stuffs and drinks. The more recent review of all the literature on safety by the European market further strengthens the safety of 10% carbamide peroxide.

Additional Benefits of the Tray
In addition to having a custom-fitted tray that provides a carrier for the bleaching material to remove the plaque and elevate the pH, the tray also provides additional benefits. Because it was made with the patient occluding into maximum intercuspation, the patient has a stable MI bite registration in which to rest. Often during orthodontic therapy, there may be times when one tooth hits high, and becomes sore. The tray levels the occlusion so all teeth are in contact and provides a relief to occlusal trauma even when no bleaching material is added.

Additionally, because the tray covers the brackets and wires of the anterior portion of the mouth, it provides protection from the irritations to the lips and cheeks of orthodontic hardware, much in the same manner as wax, but much smoother. The oral antiseptic properties of the bleaching material also help with ulcer healing, because this was the original use of carbamide peroxide. The bleaching material also helps in controlling malodor, since it provides a bubbling action to clean the teeth of food debris, as well as provide a bacteriostatic cleaning of interproximal spaces from its oral antiseptic activity.

As has been noted earlier, the disadvantage of the tray options is that they only come in one size. Hence, the tray fabricated in this manner may not cover all the teeth (Figure 14). Because the tray was made with the patient occluding into MI, this does not create an occlusal problem. The question concerns whether the teeth not covered will be protected. However, because the elevation of the pH is the primary mechanism for reducing caries activity rather than plaque removal, it may not be as critical to cover all teeth, but rather have a tray that will hold 10% carbamide peroxide in place during the night to elevate the pH above that which tooth decay can occur. When cross elastics are worn during orthodontic treatment, this technique cannot be used. Other options used during orthodontic therapy when elastics are being worn is to squirt the 10% carbamide peroxide material directly into spaces that are hard to clean for the mechanical debriement of those areas.

At this time, it is unknown whether this technique needs to be applied continually, or if it can be done for a week to clean, then do every other or third day. More research is needed in this area as to the elevation of the pH and how long it takes to drop below the critical levels to allow caries to progress, as well as the amount of plaque removed and how long takes it take to rebuild. This may vary from patient to patient. Disclosing tablets may show effectiveness over time. Additional cleaning appointments for the increased amount of calculus may...
need to be included in orthodontic plans. As with any bleaching technique, sensitivity may be a side effect. However, to date, the sensitivity associated with orthodontic therapy exceeds any noted during this process. Additionally, the use of potassium nitrate in the bleaching materials, or the topical application of potassium nitrate, should help any problems.

The use of orthodontic trays for both bleaching application and sensitivity application is another adjunct to orthodontic therapy.

Conclusion
A technique has been presented to fabricate a thermoplastic tray directly in the mouth over orthodontic brackets without removal of the brackets and without traditional impression techniques. The fabrication of this tray allows the patient to use 10% carbamide peroxide nightly as a means to reduce plaque and elevate the pH in the mouth above that which will cause tooth decay. The goal of this technique is to reduce or eliminate the need for restorations to restore whitestop and carries lesions after orthodontic treatment. No negative sequelae have been noted when this technique is used clinically, other than the additional cost of the trays and material.

Acknowledgments
Thanks to Dr. Michael Rogers, orthodontist in Augusta, Georgia, and Dr. Eladio DeLeon, Goldstein Chair of Orthodontics for Medical College of Georgia, for their help in developing this technique.

Disclosure
Dr. Haywood has been a consultant to and/or received grant support from GlaxoSmithKline and Archtek, Inc.

References